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ABSTRACT 
 

     The effective management of surface settlement induced by tunnel boring 
machine (TBM) excavation is crucial for mitigating potential casualties and structural 
damage. As a TBM advances, the surface settlement undergoes variations, highlighting 
the importance of continuous monitoring. However, conventional studies face 
challenges in addressing the extensive variations in surface settlement. To overcome 
this, this study proposes a data-driven model for predicting surface settlement in 
response to TBM excavation, using a database corresponding to seven days of 
excavation near each settlement measurement point. The optimal model was 
developed based on the Random Forest framework, achieving a RMSE of 0.962 mm 
and a R2 of 0.913. Furthermore, the results of model interpretation demonstrated that 
the preceding settlement had a dominant influence on the prediction of subsequent 
settlement, followed by the cover depth of each settlement measurement point and 
TBM face pressure. The developed model can facilitate the adjustment of TBM 
operating conditions corresponding to encountered geological formations, thereby 
ensuring the effective management of surface settlement during TBM excavation. 
 
 
 
1. INTRODUCTION 
 
     Recently, Tunnel Boring Machines (TBMs) have been widely utilized in tunnel 
construction owing to their eco-friendliness, stability, and constructability (Hyun et al., 
2015). However, TBM excavation can cause surface settlement, leading to potential 
casualties and structural damage. Therefore, effective management of surface 
settlement in TBM tunnel projects is essential. 

The longitudinal settlement profile at the ground surface exhibits dynamic 
variations during TBM tunnelling (Sugiyama et al., 1999). Remarkably, a substantial 
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portion (approximately 70 %) of the total settlement, which reaches a constant value 
after a long-term period, can occur until promptly after the passage of the TBM shield 
(Fargnoli et al., 2013). However, few studies have focused on predicting the extensive 
variations in surface settlement, which depend on the distance between the TBM and 
measurement points. Analyzing these variations facilitates the examination of the 
immediate impact of adjusting operating conditions on surface settlement during TBM 
excavation, thereby proactively minimizing potential risks.  

The machine learning approach may surpass analytical and numerical methods, 
primarily due to its capacity to effectively address complex and non-linear relationships 
among various features, along with its data-driven nature that avoids making 
assumptions. Therefore, this study developed a data-driven model to predict surface 
settlement variations in response to a slurry shield TBM advance. In addition, the 
developed model was interpreted to analyze the influence of each feature on surface 
settlement prediction. 
 
2. Background 
 
2.1 Random Forest (RF) 
     Random Forest (RF) is a widely used ensemble learning algorithm in machine 
learning that involves the bagging process. It creates multiple decision trees, each 
trained on a randomly selected subset (i.e., bootstrap sample) of the training data with 
replacement. During the prediction phase, individual trees trained by each bootstrap 
sample independently generate predictions, and the final prediction is determined 
through majority voting (in classification) or averaging (in regression). This approach 
helps to reduce overfitting and enhances the overall performance and robustness of the 
model. 
 
2.2 SHapley Additive exPlanations (SHAP) 
     SHapley Additive exPlanations (SHAP) has emerged as a prominent algorithm in 
machine learning for addressing the interpretability challenge presented by black-box 
models. It is rooted in cooperative game theory, specifically the concept of Shapley 
values, which quantifies the average marginal contribution of each feature across all 
possible coalitions (Nordin et al., 2023). By applying Shapley values in machine 
learning, the SHAP algorithm can assess the impact of each feature on the model’s 
prediction, thereby providing valuable insights into the decision-making process of the 
model. 
 
3. Database 
 
3.1 Site overview 
     This study focused on twin-bored tunnels, referred to as up-track and down-track 
tunnels (L=850 m), in Hong Kong, which were excavated using a slurry shield TBM, as 
reported in Kim et al. (2022). The specific details of the slurry shield TBM used are 
presented in Table 1. The geological formation of the site primarily consisted of five 
ground types: fill, alluvium, completely decomposed granite (CDG), core stone zone, 
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and highly decomposed granite (HDG). The longitudinal geological profile of the site is 
illustrated in Fig. 1. 
 
Table 1. Specifications of utilized slurry shield TBM 

Description Specification 
TBM excavation diameter 7.4 m 

Maximum thrust force 47,897 kN 
Maximum torque 5 MNm 

Segment diameter 7.1 m (OD), 6.5 m (ID) 
Segment width 1.5 m 

 

 

Fig. 1 Longitudinal geological profile of the site  
 
3.2 Data pre-processing 
     The objective of this study is to predict surface settlement in response to TBM 
advance. To achieve this, it is crucial to determine the influence range within which 
TBM excavation can affect the magnitude of surface settlement at a designated 
settlement measurement point (i.e., target point). Kavvadas et al. (2017) observed that 
the surface settlement was relatively steady when excavating the ground outside a 5D 
distance ahead and behind the target point, where D represents the TBM excavation 
diameter. In this site’s case, the TBM had a diameter of 7.4 m, and excavation 
proceeded at an average rate of 12 m per day. Accordingly, the influence range was 
defined as the sections excavated in proximity to each target point for seven days. This 
involved one day for excavating the ground beneath each target point and three days 
each for excavating the ground ahead and behind each target point. 

The database comprised 14 features in four categories based on the influence 
range. Geometry features included the TBM location and horizontal distance. The TBM 
location indicated the position of the ring in excavation relative to the nearest target 
point in the tunnel axis direction, where - and + indicated the backward and forward 
directions. The horizontal distance represented the distance from the tunnel axis to 
each target point. Geology features included the standard penetration test (SPT) N-
value, groundwater level (GWL), and cover depth at the TBM face, as well as GWL and 
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cover depth associated with the ring located beneath each target point. TBM operation 
features consisted of the thrust force, torque, face pressure, advance speed, backfill 
grouting volume, and time, where the time referred to the elapsed time from excavating 
the first ring in each influence range, including the TBM suspension period. Lastly, 
settlement features were composed of preceding and current settlements, indicating 
the magnitude of surface settlement associated with excavating the previous and 
current rings, respectively. Statistical descriptions of the established database are 
summarized in Table 2. Data of all features, excluding those related to each target point 
(i.e., Horizontal distance, Target_GWL, and Target_cover depth in Table 2), were 
aggregated daily to align with the daily measurements of surface settlement. 
 
Table 2. Statistical descriptions of the database 
Category Feature Min Q1 Mean Q3 Max COV* Unit 

Geometry TBM location -7.5 -4.5 0 4.5 7.5 – m 
Horizontal distance -18.52  -4.18  -3.27  0.30  18.24  -4.5  m 

Geology N-value 21 22 31 32 46 0.2  – 
GWL 0.8 1.7 2 2.4 2.7 0.3  m 

Cover depth 6.8 7.1 7.3 7.7 12.6 0.1  m 
Target_GWL 0.8 1.7 2 2.4 2.6 0.3  m 

Target_cover depth 6.8 7.1 7.3 7.6 9.9 0.1  m 
Operation Thrust force 11.8  13.4  15.6  20.8  27.2  0.2  MN 

Torque 0.35  0.69  0.99  1.25  1.63  0.3  MN∙m 
Face pressure 1.39  1.55  1.91  2.16  2.35  0.2  bar 
Advance speed 11.80  17.67  27.73  35.71  44.21  0.4  mm/min 
Grouting volume 5.99  6.38  6.43  6.48  6.90  0.0  m3 

Time 1 4 7 11 41 1.0  day 
Settlement Preceding settlement -12.4  -4.8  -2.4  -0.7  3.2  -1.2  mm 

Current settlement -12.4  -5.0  -2.4  -0.6  4.0  -1.2  mm 
* Coefficient of variation 
 

4. Method and Results 
 
4.1 Model implementation 
     This study developed a predictive model for surface settlement in response to 
TBM excavation using the RF framework with the established database. This model 
was trained on 70% of the database (191 data points), and the remaining 30% (82 data 
points) was used for testing. Bayesian optimization coupled with a 5-fold cross-
validation was employed for hyperparameter tuning. The prediction performance was 
assessed using the root mean squared error (RMSE) and the coefficient of 
determination (R2). 
 
4.2 Prediction performance 
     Fig. 2 presents the evaluated performance of the optimal predictive model, 
demonstrating satisfactory prediction capabilities in both the training and test phases. 
Specifically, the training phase yielded an RMSE of 0.541 mm and an R2 of 0.974. 
During the test phase, the optimal model achieved an RMSE of 0.962 mm and an R2 of 
0.913. The hyperparameters selected for the optimal model were as follows: 
max_depth=17, min_samples_leaf=1, min_samples_split=8, and n_estimators=147.  
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(a) Training (b) Test 
Fig. 2 Prediction performance for the optimal RF model 

 
4.3 Model interpretation 
     The SHAP algorithm was employed to comprehensively analyze the contribution 
of each feature to the predictions of the optimal model. The analysis revealed that the 
preceding settlement had the most significant contribution to predicting the subsequent 
settlement, which was the focus of this study. Additionally, the cover depth of each 
target point and the applied TBM face pressure exhibited the second and third highest 
SHAP values, respectively. This finding suggests that shallow cover depth allows the 
ground deformation induced TBM excavation to easily propagate to the ground surface, 
and the ratio of face pressure to the overburden pressure is closely related to surface 
settlement. 

In general, the features associated with the operation and geology of each target 
point demonstrated relatively higher SHAP values compared to other features. This 
highlights the importance of adjusting operating conditions appropriately and 
conducting thorough investigations into the geological properties of risky locations. In 
contrast, geological characteristics at the TBM face had little contribution to the model’s 
outcome. This could be due to the operation features inherently encompassing the 
geology features at the TBM face, or the geological formations encountered along the 
tunnel alignment in this study being relatively consistent. The corresponding SHAP 
values for each input feature are illustrated in Fig. 3. 
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Fig. 3 Contribution of each feature on predictions of the optimal RF model 
 
5. CONCLUSIONS 
 

This study proposed a data-driven model for predicting surface settlement in 
response to TBM excavation. The predictive model was developed using the RF 
framework and a slurry shield TBM database consisting of 14 features. To enhance 
model interpretability, the SHAP algorithm was employed to analyze the contribution of 
each feature to the model's predictions. The key findings and contributions are as 
follows. 

1) The optimal RF model demonstrated satisfactory prediction performance in 
both the training phase (RMSE: 0.541 mm, R2: 0.974) and the test phase 
(RMSE: 0.962 mm, R2: 0.913). 

2) Model interpretation revealed that the preceding settlement played a 
dominant role in the predictions of the optimal RF model. Additionally, the 
cover depth of each settlement measurement point and TBM face pressure 
also exerted significant influences. In contrast, the geology characteristics at 
the TBM face had little contribution to the model’s prediction. 

3) In practical applications, the proposed model can serve as an effective tool 
for mitigating and monitoring surface settlements during TBM tunnelling, 
thereby enhancing the safety and efficiency of the TBM tunnel projects. 
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